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The three-dimensional time-dependent turbulent flow in a neutrally stratified 
Ekman layer over a smooth surface is computed numerically by directly solving the 
Navier-Stokes equations. All the relevant scales of motion are included in the 
simulation so that no turbulence model is needed. Results of the simulations indicate 
that the horizontal component of the rotation vector has a significant influence on 
the turbulence ; thus the 'f-plane ' approximation fails. Differences as large as 20 % 
in the geostrophic drag coefficient, uJG, and 70% in the angle between the 
freestream velocity and the surface shear stress are found, depending on the latitude 
and the direction ,of the geostrophic wind. At 45" latitude, differences of 6 and 30 % 
are noted in the drag coefficient and the shear angle, respectively, owing to the 
variation of the wind direction alone. Asymptotic similarity theory and a higher- 
order correction are first tested for the range of low Reynolds numbers simulated, 
and then used to predict the friction velocity and stress direction at the surface for 
flows a t  arbitrary Reynolds number. A model for the variation of these quantities 
with latitude and wind angle is also proposed which gives an acceptable fit to the 
simulation results. No large-scale longitudinal vortices are found in the velocity 
fields, reinforcing the conjecture that unstable thermal stratification, in addition to 
inflectional instability, is required to produce and maintain the large-scale rolls 
observed in the Earth's boundary layer. Comparisons of the Ekman layer with a 
related three-dimensional boundary layer reveal similarities of the mean profiles, as 
well as qualitative differences. 

1. Introduction 
This paper is concerned with the turbulent Ekman layer. Specifically, we examine 

the turbulent state of an incompressible viscous fluid over a smooth flat surface, 
driven by a uniform pressure gradient while experiencing steady system rotation. 
This flow is a statistically stationary archetype of the planetary boundary layer 
(PBL) in the limit of neutral stratification, and the results provide information 
concerning models, or parameterizations, of the PBL. 

Our approach is to simulate numerically the unsteady three-dimensional details of 
the turbulence; others who utilized this procedure for the Ekman layer include 
Deardorff (1970, 1972) and Mason & Thomson (1987). The present work differs from 
Deardorff and Mason & Thomson's in that all the significant scales of motion of the 
turbulent fields are computed by way of Direct Numerical Simulation (DNS). The 
previous studies employed Larg'e Eddy Simulation (LES), a procedure in which the 
large scales are directly computed while the effect of the unresolved scales is 
approximated by a sub-grid scale (SGS) model. The advantage of LES over DNS is 
that higher-Reynolds-number flows may be simulated. However, since SGS models 



314 G. N .  Coleman, J .  H .  Ferziger and P .  R. Spalart 

introduce an unknown degree of arbitrariness, the ‘clean ’ DNS fields can provide a 
more reliable basis for the study of flow physics. Moreover, i t  is possible to  
extrapolate certain DNS generated quantities to higher Reynolds numbers using 
theoretical arguments. For these reasons we chose the DNS approach. 

Issues to be addressed using the DNS fields include (i) the presence or absence of 
large-scale coherent structures (‘longitudinal ’ or ‘roll ’ vortices) in neutrally stratified 
Ekman-layer turbulence, (ii) the effects of the horizontal component of the angular 
velocity vector (i.e, latitude) and (iii) implications for models of the PBL a t  high 
Reynolds number. 

While roll vortices are an observed PBL phenomenon with important consequences 
for transport and therefore modelling (Le Mone 1973), the physics of their formation 
is uncertain. There is a question as to whether the rolls are the result of only the 
inflectional instability mechanism associated with the Ekman-layer profile, or also 
require the additional influence of buoyantly unstable motions. Deardorff (1972) 
found that only with an upward heat flux did eddies (represented by vertical velocity 
fields) become, if not rolls, at least distinctly elongated. Wippermann, Etling & 
Kirstein (1978) also found, using a linear theory with spatially dependent turbulent 
viscosity, that stable and unstable buoyancy profiles strongly damp and strongly 
amplify linear disturbances, respectively. Furthermore, although they were fully 
prepared to observe them, Mason & Thomson (1987) failed to find large-scale 
longitudinal vortices in their neutrally-stratified LES results. On the other hand, 
theories concerning PBL rolls based solely upon the inflectional mechanism have 
been proposed by Faller (1965) and Brown (1974). These theories have as their 
foundation the fact that, for certain Reynolds numbers, the Ekman layer contains 
longitudinal rolls in a quasi-laminar state. A distinction is made herein between 
strictly laminar flow (in which no disturbances are present), quasi-laminar flow (in 
which smooth secondary circulations exist) and fully turbulent flows (in which the 
fields are chaotic). The PBL rolls have been suggested to be the atmospheric 
counterparts of the quasi-laminar rolls observed under neutrally-stratified conditions 
in the laboratory (Faller 1963; Tatro & Mollo-Christensen 1967; Caldwell & Van Atta 
1970). Whether or not these rolls survive as the Reynolds number is increased and 
the flow becomes turbulent is therefore the critical question in deciding between the 
two hypotheses. Etling & Wippermann (1975) have shown that linear disturbances 
may grow in the neutrally-stratified Ekman layer when the turbulence is modelled 
by a non-uniform eddy viscosity, although the impact of the eddy viscosity closure, 
as well as the fate of the linear disturbances once they enter the nonlinear regime, are 
unclear. This suggests that the coherence associated with the quasi-laminar roll 
might persist into the turbulent flow. Conversely, the absence of rolls in Mason & 
Thomson’s LES results mentioned above would indicate that this is not the case. 
However, Mason & Thomson were forced to compromise on resolution to specify a 
domain large enough to  support the rolls, should they exist. Because of this, and of 
the uncertainty in any LES introduced by the SGS model and ‘wall function ’ surface 
boundary conditions, the DNS fields will provide useful new data concerning the 
issue of longitudinal vortices in neutrally stratified turbulence. Stratification effects 
will be included in future simulations. 

Both Deardorff and Mason & Thomson investigated the influence of latitude on 
Ekman-layer turbulence, and drew opposite conclusions. Deardorff, who performed 
LES runs at a latitude of 45” north (with a west-northwesterly wind), found that the 
magnitude of the intercomponent turbulent kinetic energy transfer due to the system 
rotation is much smaller than the transfer produced by the pressure-strain 
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correlation. The inference was drawn that the primary effect of the latitude is to 
simply specify the value of the vertical rotation vector. This leads to the assumption 
that the ‘f-plane approximation ’, in which the horizontal component of rotation is 
neglected, applies to the turbulent Ekman layer, as well as to the nearly two- 
dimensional synoptic (‘ weather-map ’) scale flows for which it was originally 
developed. Mason & Thomson also performed an LES run a t  45” latitude. They found 
results which, when compared to the case with no horizontal rotation vector (90’ 
latitude), differed by 4% in the geostrophic drag coefficient u J G  (where u* is the 
friction velocity at the surface and G is the magnitude of the geostrophic wind) and 
21 % in the angle between the geostrophic wind and the surface shear stress. The 
apparent discrepancy can be resolved by realizing that system rotation is one of a 
number of ‘extra strains’ which have much greater influence on the turbulence than 
one would expect from the magnitude of the corresponding term of the energy 
budget (Bradshaw 1973). Streamline curvature, lateral divergence, bulk compression, 
longitudinal acceleration and buoyant forcing are other examples of such influences. 

That the influence of the horizontal component of rotation might be important for 
turbulent flow is suggested by Etling & Wippermann (1975) and Leibovich & Lele’s 
(1985) discovery of the strong dependence of linear growth rates on latitude. The 
horizontal component is found to both reduce the minimum Reynolds number a t  
which disturbances first grow and to  widen the band of unstable wavenumbers, 
compared to the case with only a vertical component of rotation. (A list of authors 
who have studied the linear stability of the latter, so-called ‘traditional’, problem is 
given in Leibovich & Lele.) 

When latitude variation is considered, the direction of the geostrophic wind with 
respect to the (northward-pointing) horizontal component of the rotation vector also 
becomes a factor. Mason & Thomson’s single 45’ latitude LES was performed a t  
conditions anticipated by linear theory to produce the maximum influence. We 
present below results of a systematic study of the wind direction-latitude effect from 
simulations a t  45” latitude with the wind from each of the four points of the compass ; 
results from simulations a t  other latitudes and wind headings are also discussed and 
used to infer more general behaviour. 

Besides acting as a source of physical insight, we expect the DNS fields to be useful 
as an ‘experimental database ’ providing diagnostic information for analytic theories 
and LES PBL codes run with neutral stratification a t  low Reynolds numbers. We 
further expect to use the results to extrapolate modelling information to  high- 
Reynolds-number atmospheric flows over smooth surfaces. Td perform this latter 
task, the asymptotic theory developed by Csanady (1967) and others and recently 
extended to higher order by Spalart (1989) will be used to  provide the drag coefficient 
u*/G and thc angle between the geostrophic wind and the surface shear stress, B, as 
a function of Reynolds number. A simple model of the latitudewind direction effect 
at arbitrary Reynolds number will also be proposed, and a procedure for including 
the influence of surface roughness in the model will be discussed. 

An experimental study of the turbulent Ekman layer has been performed by 
Caldwcll, Van Atta & Helland (1972) using a rotating table apparatus. They were 
able to match much of the atmospheric field data and Deardorffs LES results, 
despite the complications caused by finite radius effects associated with the rotating 
table. Experimental and DNS velocity profiles will be compared below. 

11 FLM 213 
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and parameter definition. 

2. Problem formulation 
The equations to be solved, over the domain - 00 < x < ao, - 00 < y < ao, 0 < z 

< co, are those which govern the flow of an incompressible viscous fluid in a rotating 
reference frame : 

( 1 )  

v - u  = 0. (2) 

au 1 
-+u.VU =- -Vp+251~  ( G - u ) + u V ~ U ,  
at P 

51 is the angular velocity of the system, with vertical and horizontal components 52, 
and 52,) respectively, and G is the geostrophic wind which defines, along with the 
acceleration of gravity g, the imposed uniform pressure gradient via 

V P  = - 2 ~ 5 1  x G+pg. (3) 

p is the deviation of the pressure from the imposed field given by (3), u the velocity 
vector, p the fluid density and u the kinematic viscosity. Equations ( 1 )  and (2) are 
to be solved subject to the boundary conditions 

u = O  a t z = O ,  u+G asz-tco. (4) 

At times sufficiently long, so that the turbulence 'forgets' the initial conditions and 
reaches a statistically stationary state, the quantities which uniquely specify the flow 
are the freestream geostrophic wind, G, the rotation vector, a, and the kinematic 
viscosity of the fluid, u. An appropriate set of non-dimensional parameters can 
therefore be chosen which includes the latitude, q5, the angle, y ,  between 52, and G, 

and a Reynolds number, N 

where f = 2 4  = 2Bsinq5 is the Coriolis parameter, and a! is the geostrophic wind 
speed. Re was designed for laminar flow, which exactly satisfies the f-plane 
approximation ; this motivates the use off instead of 52. The geometric relationships 
among B,, B,, $, G, and y, as well as the system coordinates, are shown in figure 1. 

The velocity and lengthscales which define the Reynolds number are G and the 
viscous depth D E (2u/f)i; alternative, 'inherent ', velocity and lengthscales are the 
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friction velocity at  the surface, u*, and the turbulent depth, S = uJf .  While either 
set of scales may be used for the non-dimensionalization of the results shown below, 
the latter set leads to a more Reynolds-number independent presentation when the 
flow is turbulent, and is adopted (Tennekes 1982). 

3. Numerical implementation 
The weighted-residual method developed by Spalart (1986a) is used to generate 

the turbulent fields. The technique utilizes basis functions which are periodic in the 
homogeneous x- and y-directions and, vertically, are expansions in terms of Jacobi 
polynomials in the variable 5 = exp (-z/Z) (where Z is the lengthscale of the 
associated mapping). The Fourier-Jacobi basis functions are constructed so that the 
velocity field automatically satisfies the continuity equation (2)  and boundary 
conditions (a), resulting in good computational efficiency : an initial-value, rather 
than initial-boundary-value, problem in only two dependent variables is solved. The 
pressure field need not be computed as part of the solution for the velocity field, with 
p implicitly assumed to vary periodically in the x- and y-directions. The basis 
functions also include a term to exactly resolve the slowly-decaying irrotational 
velocity fluctuations, which allows the vertical grid points to be clustered in the 
highly vortical region near the surface, without compromising the accuracy of the 
calculation in the outer flow. Further, the structure of the basis functions leads to 
matrices that are narrow-banded, an attribute which is exploited to reduce the cost 
of the computation. The single most expensive part of the code is the ‘Jacobi 
transform ’, involving typically 40 Yo of the calculation ; the operation count at  each 
timestep for this procedure is &$Nz.N,.N,2, where N,, N ,  and N, are the number of grid 
points in the x-, y- and z-directions. A mixed explicit-implicit time advance 
algorithm is used, with the timestep determined by the stability limit of the explicit 
scheme (which is applied to the nonlinear and Coriolis terms). To increase the size of 
the allowable step, the integration is performed in a translating Galilean reference 
frame moving in the direction, and at  half the speed, of the freestream geostrophic 
velocity. While mass is conserved exactly, there is no special attempt made to 
discretely conserve momentum or energy. The total method is spectrally accurate 
(that is, the numerical error approaches zero faster than any power of the grid 
spacing as the resolution is increased) in all three spatial directions and second-order 
accurate in time ; further details are available in Spalart ( 1 9 8 6 ~ ) .  

Initial conditions for the simulations consist of small or moderate level random 
disturbances (as large as 3% of the freestream velocity in each component) a t  all 
resolved wavelengths, superimposed on the laminar Ekman-layer profile. When 
available, an existing turbulent field is used for the initialization. To speed up the 
development of a mature stationary state, two procedures are employed. The first is 
the execution of the early portions of a run on a coarse grid until the turbulent 
spectrum ‘fills up’ and a balance is reached among the steady-state terms of the 
Reynolds-averaged momentum equation. The second is the time advancement of the 
mean (zero wavenumber) variables with a ‘virtual’ timestep up to ten times larger 
than that appropriate for the fluctuations. The effect of this over-relaxation of the 
(spatial) mean is to accelerate the decay of any temporal oscillations of the zero-mode 
profile at  the inertial frequency, as well as to hasten the arrival of the equilibrium 
state (Spalart 1989). 

Once the coarse-grid steady-state balance is achieved the fields are regridded, so 
that they become fully resolved, and advanced in time. Transients produced by the 

11-2 
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regridding are allowed to decay, after which averages in time of the velocity field are 
taken at intervals of approximately tf= 0.02. The ‘means’ presented below are the 
result of averaging over both time and the homogeneous directions of the flow. This 
implies that correlations are actually time averages of the deviation from the 
instantaneous spatial average, rather than from the final time and space averages. 

Although there is no compelling reason to presume that the inertial timescale is 
relevant to turbulence physics, it is possible that the spatial mean flow will contain 
a residual oscillation with period 2n/f, and influence the turbulence indirectly. 
Consequently, time averages are taken over a sample containing at least one inertial 
period. The adequacy of this precaution will be discussed further below. In all cases, 
the averaging procedure is continued until the mean profiles satisfy the steady-state 
Reynolds-averaged momentum equation to the extent that the integral of the mean 
velocity defect is within at  least 2 % of the equilibrium value. 

To verify the reliability of the program, the growth rates and phase speeds of 
instabilities in the laminar Ekman layer were computed. The properties of the most 
unstable mode at  four different Reynolds numbers matched the numerical findings 
of Melander (1983), Leibovich & Lele (1985) and Lele (private communication) to at 
least three significant figures. This agreement, together with tests performed by 
Spalart ( 1 9 8 6 ~ )  and success in simulating boundary-layer flows (Spalart 1988) 
provide confidence in the results. 

4. Cases 
4. t . Physical parameters 

Fifteen separate turbulent cases are examined, all but one at  Reynolds number 400 ; 
the physical parameters for each case are shown in table 1. The notation relates the 
cases to the corresponding meteorological flow in the Northern Hemisphere, where 
the number denotes the latitude and the letter the direction from which the wind 
originates: west, east, north, or south. The highest Reynolds number case is B90, 
with Re = 500. The A-series allows a study of the influence of latitude and wind 
direction as well as, in conjunction with B90, a measure of the effect of Reynolds 
number. C90, D90 and E90 are coarse-grid cases, with the same physical parameters 
as A90, used to investigate numerical issues. A quasi-laminar reference case a t  Re = 
150, ‘R90’, is also computed. 

4.2. Numerical parameters 
The horizontal lengths of the numerical domain, L, and L,, are each specified to be 
approximately twice the turbulent depth, 8. A sufficiency check on this condition was 
made by computing the horizontal two-point correlations, and by running cases C90 
and D90. The latter cases differed from each other only in the size of the horizontal 
domains : D90 used 26 x 26,C90,46 x 46. Details of the comparison will be discussed 
below. The location of the highest vertical quadrature point is at least z = 1.6s. 
Vertical profiles of mean velocity, Reynolds stresses and r.m.8. vorticity shown below 
indicate that this value is reasonable. 

The spatial resolution used was guided by previous DNS of two- and three- 
dimensional boundary layers (Spalart 1988, 1989). Enough collocation points are 
utilized in the A and B series runs so that the horizontal grid spacing is less than 8 
viscous units, i.e. Axi = u* Axlv  < 8. Horizontal energy spectra were monitored to 
verify the validity of this criterion. In the vertical direction, the first grid point above 
the surface is at x+ e 0.2 and the first ten points are within approximately zf = 10. 
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Case Re 4 (deg.) Y (deg.1 

A90 400 90 - 

A45W 400 45 270 
A45E 400 45 90 
A45N 400 45 180 
A45S 400 45 0 
A30E 400 30 90 
A25W 400 25 270 
A15W 400 15 270 
AlOE 400 10 90 
A05W 400 5 270 
AOOE 400 0.1 90 
B90 500 90 
c90 400 90 - 

D90 400 90 - 

E90 400 90 - 

R90 150 90 

__ 

- 

TABLE 1. Physical parameters 

Caw N, N,  N,  LJS L,/8 Z / S  z,,,,/S Ax+ Ay+ 
A90 96 96 45 2.0 2.0 0.25 1.8 7 7 
A45W 96 96 45 2.1 2.1 0.26 1.9 7 1 
A45E 96 96 45 2.0 2.0 0.25 1.8 1 7 
A45N 96 96 45 2.0 2.0 0.25 1.8 7 1 
A45S 96 96 45 2.0 2.0 0.25 1.8 7 7 
A30E 96 96 45 1.9 1.9 0.24 1.7 8 8 
A25W 96 96 45 2.1 2.1 0.27 1.9 1 7 
A15W 96 96 45 2.2 2.2 0.27 2.0 1 7 
AlOE 96 96 45 1.8 1.8 0.22 1.6 8 8 
A05W 96 96 45 - 

AOOE 96 96 45 - 

- - - - - 
- - - - - 

B90 128 128 50 2.1 2.1 0.26 2.0 8 8 
c90 96 96 35 3.9 3.9 0.24 1.6 15 15 
D90 48 48 35 2.0 2.0 0.24 1.6 15 15 
E90 48 48 35 2.0 2.0 0.24 1.6 15 15 

- - - - R90 2 32 30 - - 

TABLE 2. Numerical parameters 

The vertical lengthscale, 2, used in the exponential mapping to achieve this 
resolution is typically as. The number of grid points, as well as the value of the other 
numerical parameters used for each of the cases is listed in table 2. As a result of the 
dealiasing procedure employed, the number of spectral modes in each direction is 8 
the number of grid points (Spalart 1986a). 

The R90 reference case uses only enough grid points to resolve the quasi-laminar 
flow structure, which depends on only two spatial variables ; the domain is configured 
to support the most linearly unstable wave at this Re. The vertical lengthscale used 
is twice the viscous depth: Z = 20. 

Runs were made on the NASA-Ames Cray XMP with the fully resolved Re = 400 
and 500 cases requiring 8 and 15 CPU seconds per step, respectively. The code 
completed about 6000 timesteps in advancing an inertial time period, which 
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FIGURE 2. Contours of vertical velocity, w/G, in a vertical plane normal to the axis of longitudinal 
rolls in Re = 150 quasi-laminar flow at 90" latitude. -, WIG > 0; ---, WIG < 0; contour interval 
0.001. The height and width of the region shown are 1 3 0  and 120, respectively. Angle between roll 
axis and geostrophic wind is 11". 

translates to an average step size of about Atf = 0.001, At+ = (u i /v )  At = 0.4, or 
( G / 6 )  At = 0.015. 

5. Results 
5.1. 90" Zutitde (a, = 0) 

A quasi-laminar reference case a t  Re = 150 was first computed. Vertical velocity 
contours in the vertical plane normal to  the axis of the resultant roll cells (not the 
geostrophic wind) are shown in figure 2. The view shown is looking along the roll axis, 
roughly downstream. This field, which varies in only two spatial dimensions, was 
produced using initial conditions consisting of a single disturbance, corresponding to 
the linearly most unstable wave, superimposed upon the laminar profile. The 
amplitude of the wave reached a steady finite value. The angle between the 
freestream velocity and the surface shear stress for this flow is 43.9", not appreciably 
different from the laminar 45" value. This indicates that the Reynolds stress induced 
by the wave is quite weak at Re = 150. 

Repeating the single wave initialization a t  Re = 400 produces a flow in which the 
strength of the roll cell is not steady, as with Re = 150, but instead varies periodically 
in time. Since the field is constrained by the initialization to remain quasi-laminar (in 
particular, no variation in space in the direction parallel to the roll axis is allowed) 
at a Reynolds number large enough to sustain turbulence, the resulting state is 
somewhat artificial and not reported in detail here. When low-level three-dimensional 
disturbances (0.01 % of freestream in each component) are superimposed on this 
pulsing, quasi-laminar field, the flow quickly breaks down and soon resembles the 
turbulent cases discussed below. 

Contours of vorticity magnitude from a realization of the turbulent flow calculated 
as part of the Re = 400 A90 series are shown in figure 3. The view is of the full 
computational domain. The freestream flow is from left to right, into the plane of the 
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FIQURE 3. Contours of vorticity magnitude, lop/G, on the sides and bottom of the domain for a 
realization of case A90 Re = 400 turbulent flow at 90' latitude. The minimum contour level is 0.15. 
the contour interval 0.5, with a maximum value 5.47 observed. 

Y 

FIGURE 4. Contours of vertical velocity, w/G, in a vertical plane normal to the geostrophic wind 
for a realization of case A90 Re = 400 turbulent flow at 90' latitude. -, w / G  > 0;  ---, WIG 
< O ;  contour interval 0.012, with observed extreme values of -0.14 and 0.17. View looking 
downstream. 

paper, and only the left-hand (streamwise), downstream (spanwise), and lower 
surfaces contain curves. Figure 4 is the turbulent equivalent of figure 2, displaying 
instantaneous contours of vertical velocity in a vertical plane normal to the 
geostrophic wind. These figures illustrate the turbulent character of the solutions. 
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FIGURE 5 .  Contours of two-point velocity correlation coefficient R,, (summed over all three 
components) on horizontal plane at 2/13 = 0.03 (z+ = 9) for case A90 (Re = 400). -, Rii 2 0;  
contour interval 0.1. 

Two-point correlations 
Two-point velocity correlations (summed over all three components) on horizontal 

planes for case A90 (Re = 400) are displayed in figures 5-7, with the freestream 
geostrophic wind aligned with the x-axis (see figure 1). Figure 5 corresponds to the 
horizontal plane at z = 0.036 (z' = 9) which is near the location of maximum 
turbulent kinetic energy production. The correlation and one realization of the 
instantaneous u, v and w velocity fields a t  z = 0.26 are shown in figure 6 ( a - d ) ;  
correlation data from x = 0 . 3  are given in figure 7 .  The turning of the mean velocity 
gradient vector with height induces the change in direction of maximum coherence 
observed in the figures. The fields also become more isotropic with increasing z. The 
correlations are similar to those of Mason & Thomson, and indicate the absence of 
coherent roll vortices. If rolls were present, the high contour levels would be much 
more elongated in the x-direction. The correlation field associated with the quasi- 
laminar flow of figure 2 consists of straight contours parallel to the roll axis. A purely 
isotropic field would produce circular contours. While the contour plots indicate 
some streamwise stretching of eddies by the mean velocity gradient, the low level 
associated with a separation equal to  demonstrates that  the turbulent field is 
very different from the quasi-laminar flow shown in figure 2. 

Since the 0.2 contour is not closed within the domain at z / 6  = 0.2, the correlation 
fields indicate that the 28 x 26 box size is only marginally adequate. Adding to this 
concern is the fact that  the range of linearly unstable waves (in the laminar flow) has 
been shown to be very wide, extending to  lengths much larger than the lateral 
dimension of the computational domain (Leibovich & Lele 1985). It is thus 
conceivable that the A90 results are not independent of the numerical domain, an 
unacceptable situation. To investigate this question, the linear stability analysis was 
repeated for Re = 400 using Leibovich & Lele's code with, instead of the laminar 
Ekman profile, the modified mean of case A90 as the background state. (The 
molecular viscosity was retained.) The growth rates were greatly reduced in general, 
although modes a t  some angles were found to remain unstable. A more telling test 



A numerical study of the turbulent Ekman layer 323 

FIGURE 6. Contours of (a)  two-point velocity correlation coefficient R,, (summed over all three 
components), and instantaneous, (a) u/G, (c) v/G, and (d )  w/G velocity oomponents (with mean 
removed) on horizontal plane at 2/19 = 0.2 (z+ = 70) for case A90 (Re = 400). (a)  -, R ,  2 0;  ---, 
RZi < 0;  contour interval 0.1 (b)-(d)  Legend, contour interval, and (minimum, maximum) values: 
(b)-,u/G > O;---,u/G <0;0.02,(-0.40,0.16).(~)---, w/G > O;---,W/G <0;0.02,(-0.27, 
0.15). (d )  -, w/G > 0 ; ---, w/G < 0 ; 0.012, ( - 0.16,O. 17). 

of the influence of domain size on the results was performed by running cases C90 and 
D90 (which differ only in domain size, 46x46  and 26x26, respectively). The 
averaging time for the small domain run was four times as long as that for the large 
domain run, to  ensure that the same number of samples entered the determination 
of the time-space means for both cases. Limited computer resources constrained the 
large (and therefore the small) domain run to use a coarse grid, resulting in slightly 
under-resolved fields. The correlation a t  z = 0.26 from the large domain run is shown 
in figure 8. The D90 correlation a t  z = 0.28 is similar to that for A90 given in figure 
6 (a ) .  Comparing figures 6 ( a )  and 8, in which the plot sizes are proportional to domain 
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... 

-1.0 -0.5 0 0.5 I .o 
X I S  

FIQURE 7. Contours of two-point velocity correlation coefficient R,, (summed over all three 
components) on horizontal plane at z / S  = 0.3 (z+ = 110) for case A90 (Re = 400). -, R,, 2 0 ;  ---, 
R,, < 0;  contour interval 0.1. 

sizes, gives an indication of the effect of the box size on the correlation. The larger 
domain does indeed produce a significantly improved correlation field for large 
separations ; however, while the box size for the two cases changes from marginal to 
very good, the friction velocity a t  the surface, u*, and the angle of the surface shear 
stress with respect to the freestream velocity, ,8 (figure l ) ,  change by only 0.1 and 
2 %, respectively. The energy associated with any long-wavelength linearly unstable 
modes which may be unresolved is evidently negligible. It appears that the smaller 
box size is adequate. Note that even the large domain does not lead to the presence 
of longitudinal rolls. 

It is also possible that the orientation of the domain with respect to the 
geostrophic wind could influence the numerical results. To ensure that this is not the 
case, run E90 was performed. E90 is identical to  case D90 except that the domain is 
rotated 45" with respect to G. Very little difference is noted between the results of 
the two cases ; the correlation fields are very similar and the values of both u* and 
p differ by only 0.2%. This implies that  the results presented below contain no 
directional bias introduced by the numerical procedure. 

Global quantities 
The time histories of the surface quantities u* and /3 for run A90 are shown in figure 

9. Since the values are derived from spatial means (averages over the domain), the 
oscillations in time have no direct physical significance. If the size of the box from 
which the spatial means are obtained were infinite, and the flow were statistically 
stationary, no time variation of the spatial mean would exist. While performing the 
small- and large-domain D90/C90 comparison runs discussed above (the former 
includes four times as many samples in the spatial mean as does the latter) the r.m.s. 
levels of the time signals were observed to be in a nearly two-to-one ratio, indicating 
that the oscillations in time of the spatial means are of a statistical nature (i.e. the 
r.m.s. scales with the inverse square root of the sample). 

The time signals of the histories of the global quantities were Fourier decomposed 
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FIQURE 8. Contours of two-point velocity correlation coefficient R,, (summed over all three 
components) on horizontal plane at z / 6  = 0.2 for case C90. -, Rii 2 0; contour interval 0.1. 

to see if dominant oscillations a t  the inertial frequency exist. None were observed. 
Samples containing as many as 20 inertial periods (cases D90 and E90) were 
analysed. The precaution of averaging over a period of exactly tf = 27t (or a multiple) 
is therefore unnecessary. The lack of significant inertial-frequency oscillations leads 
us to conclude that, at least as far as the surface quantities are concerned, the flow 
is indeed in a stationary state. 

Global results from all cases are given in table 3. Possible sources of error in the 
values given include both numerical (finite box size and space/time resolution) and 
statistical (finite time sample) inaccuracies. By appealing to studies performed by 
Spalart (1988, as part of a DNS investigation of two-dimensional boundary layers) 
of the influence of box size and grid spacing on the behaviour of the surface stress, 
we may estimate the likely numerical error for the present results. An indication of 
the statistical error is the quality of the global momentum balance determined by 
integrating the mean velocity defect and comparing with the surface stress. All the 
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FIQURE 9. Time history of the spatial mean (a) friction velocity a t  the surface, u*, and ( b )  angle 
between the geostrophic wind and surface shear stress, p, for case A90 (Re = 400). 

table 3 values are computed from mean profiles that yield balances to within 2%. 
Most of the global momentum imbalance occurs in the outer flow region, where, 
because of the scale of the turbulence, the mean profiles tend to settle down more 
slowly. A quantitative measure of the statistical error is the difference of the partial 
averages of u,* and /3 taken over the first and second half of the time sample. From 
these considerations, we believe the maximum error in the values shown in table 3 
is of the order of 1 % for u* /G  and 3 % for /3, 

Vertical proJiles 

Mean velocities from the Re = 400 series are exhibited in figure 10(a, b )  in 
component and hodograph form. The component profiles indicate an Ekman-layer 
height, defined as the minimum height where ( u )  and G are parallel ((v) = 0), of 
about 0.76. The dotted curve hodograph in figure 10(b) represents the laminar 
solution. The same data, plotted in coordinates aligned with the surface shear stress 
are shown in figure 10 ( c )  in inner (or viscous) units, in which velocities are normalized 
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Case "* lG B (deg.) 810 
A90 0.0652 28.5 13.0 
A45W 0.0625 34.2 12.5 
A45E 0.0666 25.3 13.3 
A45N 0.0652 28.5 13.0 
A458 0.0658 29.5 13.2 
A30E 0.0689 23.4 13.8 
A25W 0.0614 37.6 12.3 
A15W 0.0600 42.1 12.0 
AlOE 0.0740 20.9 14.8 
A05W 0.059 44.7 - 
AWE 0.061 44.8 
B90 0.0627 25.4 15.7 
c90 0.0674 27.6 13.5 
D90 0.0674 28.1 13.5 
E90 0.0673 28.1 13.5 
R90 0.097 43.9 

- 

TABLE 3. Global results 

by u* and lengths by the viscous length v/u*. The logarithmic region at this 
Reynolds number is either very thin or non-existent. 

The components of the velocity defect in shear stress coordinates, scaled by u* and 
6, are given in figure 11.  With this scaling, the defect should be a universal function 
of z / 6  in the outer region of the layer (Tennekes 1982). Re = 400 and 500 DNS results, 
A90 and B90, as well as the experimental results of Caldwell et al. (1972) are shown. 
The experimental velocity profiles yield global momentum balances which are far 
from equilibrium (as much as 40 %) ; the discrepancy between the experimental data 
and the DNS is thought to be due mainly to  finite radius effects inherent in the 
rotating table apparatus used in the laboratory. Within the inner layer, the 
components of the defect from the numerical results indicate the variation with Re 
of the magnitude and direction of the surface shear. 

Root mean square fluctuations of the individual velocity and vorticity components 
from the (Re = 400) A90 series are displayed in figure 12, using both the inner and 
outer scalings. The magnitude of the vertical velocity component is smaller than its 
streamwise and spanwise counterparts throughout the boundary layer, except very 
near the top of the simulation domain (figure 12a). The small but finite velocity 
fluctuations at the top of the domain are due to the slowly decaying irrotational 
velocity field which is exactly resolved by the numerical method (see $3 and Spalart 
1986~) .  The streamwise (freestream direction) fluctuations are the largest near the 
surface, but as the elevation increases they are reduced to a level less than, then equal 
to, that of the spanwise component. Except for this streamwise-spanwise reversal, 
which is a symptom of the three-dimensionality of the flow, the behaviour of the 
velocity perturbations is similar to that observed in two-dimensional boundary 
layers. 

The rapid drop-off of the vorticity fluctuations with elevation (figure 126), 
signifies that  the height of the numerical domain is adequate. The spanwise 
component is largest throughout the layer. The profiles are again similar to their two- 
dimensional counterparts ; note the large streamwise component near the surface, 
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FIQURE 10. Mean velocity components for case A90 (Re = 400). (a )  Axes aligned with freestream 
velocity; -, streamwise; ---, spanwise. ( b )  Hodograph. . . . , laminar profile. (c) Axes aligned 
with surface shear stress; ~ , shearwise; ---, cross-shear; . . ., u+ = z+ for z+ Q 1O,u+ = &ln 
z+ + 5 for z+ > 10. 
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FIGURE 11 .  Mean velocity components, axes aligned with surface shear stress. (a )  Sheanvise defect. 
( b )  Cross-shear defect. -, case A90 (Re = 400); ---, case B90 (Re = 500); 0, Caldwell et al. 
(1972) run 1 ;  V, Caldwell et al. (1972) run 7 .  

consistent with the characteristic near-wall 'streakiness ' found in other boundary 
layers. 

Total and Reynolds stress curves are shown in figure 13, in axes aligned with the 
freestream velocity, while figure 14 exhibits the variation of the direction of the 
Reynolds stress, velocity gradient and velocity vectors. All angles are measured with 
respect to the surface shear stress. The vertical coordinate here, and in the plots to 
follow, is limited to z / 6 <  1. Throughout the Ekman layer, the direction of the 
Reynolds stress and gradient vectors continues to spiral nearly linearly with z. From 
the surface up to an elevation of about z = 0.16, the angle between the Reynolds 
stress and the surfitce stress is larger than that between the surface stress and the 
velocity gradient. Above z = 0.16, however, the gradient angle is up to 30' larger 
than the stress angle. The significant differences in the direction of the shear and 
stress vectors imply that the use of an eddy viscosity closure, which assumes the 
Reynolds stress is aligned with the velocity gradient, is incorrect for this flow (despite 
this formal discrepancy, integration with an eddy viscosity model may produce mean 
velocities that are not in serious disagreement with actual profiles). Similar results for 
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FIGURE 12. Root mean square fluctuations of (a) velocity, and ( b )  vorticity for case A90 (Re = 400). 
Axes aligned with freestream velocity; -, total ; ---, streamwise; * * * ,  spanwise; -.-, vertical. 

the direction variation with height are presented by Deardorff (1970). However, 
because Deardorffs LES uses a surface-function lower-boundary condition, and the 
present DNS fully resolves the turbulence down to the no-slip surface, there is a 
difference. Unlike the situation shown in figure 14, the angles of the stress and 
gradient match a t  the bottom of the LES domain, and never cross. The relatively 
high location of the stress-gradient cross-over in the DNS flow is a consequence of the 
low Re. At Reynolds numbers typical of the PBL the cross-over presumably occurs 
at a much smaller value of z/S. 

The distribution with height of the magnitude of the eddy viscosity, v,, defined as 
either the ratio of the magnitude of the Reynolds stress to the magnitude of the 
velocity gradient, or the ratio of the turbulent kinetic energy production to the 
square of the magnitude of the velocity gradient, is shown in figure 15 (a )  (the second 
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FIGURE 13. Stress profiles for case A90 (Re = 400) (axes aligned with freestream velocity). (a) 
Reynolds stress ; -, - (uw) ; ---, - (vw) ; . . . , - (uv). ( b )  Total stress ; -, streamwise ; ---, 
spanwise. 

, 
definition was suggested to us by Professor D. K. Lilly). The values of vT are 
comparable to those obtained by Deardorff (1970). 

It is tempting to use a constant eddy viscosity when considering a turbulent flow 
in an effort to apply quasi-laminar Ekman-layer results to the turbulent case. 
However, the variation of the eddy viscosity with height demonstrated in figure 
15(a),  especially its reduction to zero near the surface, leads one to question the 
validity of such a practice. It has been shown that the quasi-laminar and turbulent 
flows differ qualitatively in that longitudinal rolls exist in one but not the other, and 
that the turbulent surface shear angle, /3, is significantly less than the quasi-laminar 
value of nearly 45’. 

Even formulations that use an eddy viscosity which varies with elevation may be 
of limited utility. For example, it is not clear that an analysis of wave-like 
disturbances in a turbulent flow, based on the turbulent mean profile and the ‘exact ’ 
v,(z), would be meaningful. The reason is that the cddy viscosity contains 
contributions from the entire turbulent range of scales, which (unless the waves have 
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FIGURE 14. Direction of mean Reynolds stress, velocity gradient and velocity vectors, measured 
from surface shear stress (positive counterclockwise) for case A90 (Re = 400). -, Reynolds 
stress; ---, velocity gradient; . . . , velocity. 

lengthscales and timescales that are large compared with S and l/f) includes the 
wavelength of interest. 

Figure 15 (b) presents the profile of the mixing length, 1, the ratio of the square root 
of the magnitude of the Reynolds stress to the magnitude of the velocity gradient. 
The dashed line describes the curve I = KZ,  with K = 0.41. The mixing length is zero 
a t  the surface, grows rapidly and then more slowly with increasing z ;  the behaviour 
differs from the ideal constant stress layer in that Z/z d K for the entire profile. This 
is thought to be a consequence of the favourable pressure gradient, since during a 
simulation of sink-flow boundary layers, the same behaviour was observed (see figure 
9 of Spalart 1986b). 

The vertical variation of the ratio of the magnitude of the Reynolds stress to the 
trace of the Reynolds stress tensor, known as the structure parameter, a,, is given by 
the solid curve in figure 16. As with other three-dimensional boundary layers 
(Bradshaw & Pontikos 1985), the maximum value observed, 0.11, is less than the 
usual two-dimensional a, x 0.16. The other curves shown in figure 16 are results from 
cases with 0, ?= 0, which will be discussed below. 

Profiles of the mean velocity from run B90 (Re = 500) are given in figure 17 (a, b ) .  
The component curves in figure 171a) are similar to those from the Re = 400 case, 
figure 10 (a ) ,  in that the cross-stream component crosses zero a t  approximately 
z = 0.78. Significant differences exist in the hodograph representations, figures 10 (b) 
and 17 (b). A reduction of the angle between the freestream velocity and surface stress 
is observed in the higher-Reynolds-number flow, and the tops of the profiles are 
noticeably dissimilar. 

The stress profiles in figure 18(a, b )  reveal that the only major difference in 
the Re = 400 and Re = 500 results is in the behaviour of the uu-component (which, 
because of the homogeneity in x and y, does not enter into the Reynolds-averaged 
momentum equations). Figures 13 (a)  and 18 (a) demonstrate that uw and ww are in 
near agreement, although a t  the higher Reynolds number they are slightly larger 
when scaled by u*. The total stresses are in excellent agreement (figures 13b and 
18b). 
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FIQWRE 15. Eddy viscosity and mixing length profiles for case A90 (Re = 400). (a) Eddy viscosity. 

( b )  Mixing length. 
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- - - ,Kz, with K = 0.41. 

5.2. 45' latitude (Q, = a,,) 
Time histories of u* and ,4 from the q5 = 45' comparative wind direction runs at Re 
= 400 are exhibited in figure 19(u-d). As discussed above, the oscillations of these 
spatial mean quantities are statistical. On all plots, the solid line represents the 52, 
= 0 run, A90, presented for reference. The largest difference occurs between the 
A45E and the A45W (east and west wind) results shown in figure 19(a, b). Figure 
19(c, d )  histories imply that the A45N and A458 north and south wind cases differ 
only slightly from the 90' latitude simulation. 
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FIGURE 17. Mean velocity components for case B90 (Re = 500). (a) Axes aligned with 
freestream velocity. -, streamwise; ---, spanwise. ( b )  Hodograph. * - a ,  laminar profile. 
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FIQURE 18. Stress profiles for case B90 (Re = 500) (axes aligned with freestream velocity). (a) 
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The variation with wind direction of time-space averaged values of the 45' 
latitude surface quantities is presented in figure 20(a, b) .  The plots show u* and /3 
as functions of the angle, y ,  measured counterclockwise from the horizontal rotation 
vector 0, to the geostrophic wind (figure 1). The data points represent the DNS 
results, the horizontal line the results with 52, = 0;  the dashed curve is a least- 
squares interpolant of the form c, + c2 cosy + cg sin y.  The vertical scale of both plots 
has been expanded. 

The latitude-wind direction effect is found to influence not just the surface stress 
behaviour, but also that of the structure parameter, a,, through the depth of the 
layer. a,  profiles from A90, A45E and A45W are shown in figure 16. 

5.3. Other latitudes (a, > 52,) 
Figure 16 also contains structure parameter curves from the 'low latitude' A-series 
simulations A30E, A25W, A15W and AlOE. (Since geostrophic winds from the north 
and south a t  q5 = 45" led to flows little different from that at q5 = go", only east and 
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west wind cases were computed.) Differences in the structure parameter are even 
more dramatic than those observed at  q5 = 45'. Comparing all of the curves reveals 
a tendency for the maximum in the a, profile to increase as the latitude is reduced, 
when the wind is from the east. West wind results show the opposite effect as q5 
decreases, with the appearance of a double maximum in the profile. 

The most severe reduction in a, (from A15W) is comparable to that in strongly 
three-dimensional boundary layers, where values as small as 0.09 have been found 
(Bradshaw & Pontikos 1985). This is interesting, since the Ekman layer is near 
equilibrium, while the strongly three-dimensional cases cited by Bradshaw & 
Pontikos are in a state of rapid adjustment to large cross-flow pressure gradients. 

The surface stress results from these runs are shown in table 3. The east-wind cases 
are noted to become more 'turbulent ', in the sense of higher u*/G and lower p, as the 
latitude decreases, while the west-wind cases become less. This east/west en- 
hancement/reduction trend continues with diminishing @ to the point that AlOE is 
the most vigorous, and A15W the least vigorous, of the runs simulated. In fact, 
A15W is very weakly turbulent, associated with a near-laminar surface stress. A t  
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6. Discussion and conclusions 

6.1. Longitudinal rolls 
The linear instability which is the first stage of laminar to turbulent transition often 
leaves its mark on the turbulent field. A classic example is the Taylor-Couette flow 
in which vortex cells exist in both non-turbulent and turbulent flows. The Ekman 
layer could display similar behaviour. It was shown that, in the absence of noise, the 
linear instability can grow and saturate to produce a flow with a well-defined roll (see 
figure 2). However, when the initial conditions include disturbances to all resolved 
wavelengths, including those corresponding to the most unstable of the linearly 
unstable roll modes, the developed turbulent fields contain no evidence of 
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FIGURE 20. Variation with geostrophic wind orientation of (a) surface friction velocity and ( b )  
surface shear angle at 45" latitude with Re = 400. - .- A90 ; ---, c1 + cg cosy + c3 sin y interpolant, 
constants used are (cl, c2, c3) = (0.0650,0.0003,0.0020) for u*/G and (29.38,0.50, -4.45) for /3; 
symbols are results from cases A45E, A45W, A45N, and A45S. 

longitudinal vortices. The DNS results thus corroborate Mason & Thornson's earlier 
LES results concerning this issue. Rolls were absent from the fields at all latitudes 
and wind directions, (Linear stability analysis hints that turbulent rolls might be 
more apt to appear in some of the simulations than in others. This is because, as 
pointed out by Leibovich & Lele, for certain orientations of 52, and G the horizontal 
rotation component can act to broaden the range of unstable wavenumbers, 
implying that no single wavelength has a distinct advantage during any mode 
selection process which might occur. A final coherent state is thus less likely. Other 
0,-G configurations presumably act to narrow the wavenumber range, leading to 
the opposite effect.) The inflectional instability apparently does not lead to 
permanent longitudinal rolls. It may be important, however, in permitting transition 
to occur at  lower Reynolds numbers than in the two-dimensional boundary layer. 
Buoyantly unstable conditions are probably required for large-scale PBL structures 
to arise and subsist. We plan to use a modification of the present code to stimulate 
the buoyantly unstable Ekman layer; such simulations will be reported 1ater.t 

For the neutral case, based on observations of the simulated fields (and especially 
the lack of longitudinal rolls) it appears that the turbulent Ekman layer has more in 
common with the turbulent two-dimensional boundary layer than with the quasi- 
laminar Ekman layer. 

t Note added in proo) Recent computations have shown that the rolls do appear for a certain 
range of surface heating conditions (publication forthcoming). 
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F I G U R E  2 1 .  Comparison of basic similarity theory, higher-order correction and numerical results for 
( a )  surface friction velocity and (6) surface shear angle (vertical scale expanded to facilitate 
comparison). -, basic theory (Csanady 1967) with A = 7.1, B = -0.7, and K = 0.41: ---, higher- 
order theory (Spalart 1989) with A = 5.2, B = 0.1, K = 0.41 and C5 = -52; symbols are results from 
cases A90 and B90. 

6.2. Extrapolation to higher Re 
The Re = 400 and 500 90" latitude DNS data may be used in conjunction with 
asymptotic similarity theory to predict the variation with Reynolds number of u* 
and /3. The theory developed by Csanady (1967), and others, maintains that for 
smooth surfaces 

G 2 6 2  1 A 
-cosB+-ln- = -lnRe--lnB+B, 
u* 

sinp = -, 
G/U* K U* K K 

where A and B are non-dimensional constants. When the DNS results are used to 
determine the similarity constants, we find that A = 7.1 and B = -0.7 provides the 
best overall fit of the variation of u* and p from Re = 400 to 500. The accuracy of 
the fit is shown graphically by the solid curve in figure 21. The symbols are the DNS 
data points and the vertical lines through the symbols represent a measure of the 
uncertainty of the values, as discussed in $5. While the prediction for u* is adequate, 
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that for p is not. Since the similarity constants have essentially no effect on the slope 
of the curves, other choices of A and B would lead to no improvement, so the theory 
represented by ( 5 )  evidently does not apply at these low Reynolds numbers. 

In an attempt to expand the range of application to low Reynolds numbers, a 
higher-order theory has been developed by Spalart (1989). Originally derived for the 
boundary-layer flow with rotating freestream velocity, the theory uses arguments 
which are equally valid for the Ekman layer. The higher-order relationships are 

G 2 c 2  1 
-cosO+-ln- = -1nRe--lnZ+B, ( 6 4  u* K U* K K 

where 

A 
sin8 = -, 

GlU* 

C, is a non-dimensional constant, analogous to K (Spalart 1989). The only difference 
between (5) and (6) is the replacement in (6) of /? with the modified angle 0, given by 
(6c). At high Reynolds numbers, 8 approaches p, and the formulations become 
identical. 

For the rotating freestream boundary-layer flow, Spalart (1989) found the higher- 
order prediction and surface-stress behaviour to match very well for Reynplds 
numbers Re = U/(fvf); ranging from 500 to 767, where U is the magnitude, andf the 
rate of rotation, of the freestream velocity. In the present flow, over the smaller Re 
= 400 to 500 range, the agreement is also quite good, as shown by the dashed curve 
in figure 21. The constants used are A = 5.2 and B = 0.1, with C, taken to be -52. 
The exact value of C,  is uncertain, but is thought to lie between - 52 and - 64 (Coles 
1968; Spalart 1989). While Spalart found that C,  = -64 gave the best results for the 
rotating freestream flow, we find that -52 produces the best fit. However, any value 
of C, between -52 and -64 used in the higher-order theory yields a much better 
prediction at these Reynolds numbers than does the unmodified theory ( 5 ) .  

The matching of the prediction and the data between the two DNS Reynolds 
numbers allows us to extrapolate the behaviour of u* and /? to arbitrary Reynolds 
numbers. Such an extrapolation is shown in figure 22. The error which would result 
from using the basic theory (solid curve) rather than the higher-order theory (dashed 
curve) is apparent, especially in the prediction for /I. An indication of the range of 
Reynolds numbers over which the higher-order correction is significant is given by 
the difference between the dashed and dotted curves in figure 22. The dashed curve 
is the higher-order prediction and the dotted that of the basic theory using the 
higher-order constants ( A  = 5.2 ,B = 0.1). 

Normally, a similarity theory valid for flow over rough surfaces is used in 
atmospheric applications in which a characteristic roughness height, zo, appears, 
rather than the viscous length v/u*. The values of A and B obtained for use in (6) 
consequently might seem to have limited applicability. A connection can be made, 
however, between the rough and smooth surface constants. For a rough surface, the 
constants are (Csanady 1967) 

BZo = GJu*--ln-, 1 u* 
K fzo 
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Re 

Re 

FIGURE 22. Extrapolation of (a) surface friction velocity and (b)  surface shear angle with Reynolds 
number. -, basic theory (Csanady 1967) with A = 7.1, B = -0.7, and K = 0.41; ---, higher- 
order theory (Spalart 1989) with A = 5.2; B = 0.1, K = 0.41 and C, = -52; * .  . , basic theory 
(Csanady 1967) with A = 5.2, B = 0.1, and K = 0.41 (dashed and dotted curves overlap in ( a ) ) ;  
symbols are results from cases A90 and B90. 

G, and G, being components of the geostrophic wind in a coordinate system at angle 
/3 (or 8 for the higher-order theory) to the freestream velocity. By rearranging (6), we 
may write the smooth-surface constants in a similar form : 

1 u2 

K f v  
B = C,/u,--lnl, 

and A = G,/u,. (6 b') 

This implies that A ,  = A ,  ( 8 4  

and 
1 BzO = B+-Ins, 
K 

where 6 = zo / ( v /u*) ,  (8 4 
the ratio of the routh- to smooth-surface lengthscales. We may therefore determine 
Azo directly from the smooth-surface DNS results and if we can specify E such that 
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FIGURE 23 (a, b).  For caption see facing page. 

the outer regions of the flows over smooth and rough surfaces are identical, Bzo as 
well. There is an extreme amount of scatter in the values cited in the literature, with 
4 < Azo < 16 and - 12 < B, < 4 (Caldwell et al. 1972; Wyngaard, Cote & Rao 1974; 
McBean 1979). The present DNS results imply AZo = 5.2 and, with E taken to be 0.1, 
BZo x -5.5. 

6.3. Effect of latitude 

The greatest influence of the latitude-wind angle effect is noted when the wind is 
directed nearly due east or west. Differences as large as 20 and 70% in u,/G and p, 
respectively, are found among the cases simulated. There is a 6 and 30% difference 
between these quantities at q5 = 45" caused by changes of the wind direction alone 
(see figure 20). The magnitude of the effect is comparable to Mason & Thomson's 
observation of 4 and 21 % differences in 45' and 90" latitude LES results. The degree 
to which system rotation can fundamentally modify a turbulent flow is also indicated 
by the observed variation with q5 and y of the structure parameter profiles (figure 16). 

The explanation of why such an apparently small influence as the horizontal 
rotation has such a dramatic effect lies in the role of rotation in redistributing the 
energy among the individual components of the turbulent kinetic energy (Johnston, 
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FIGURE 23. Surface shear variation with latitude at  Re = 400 for (a), ( b )  west wind (y = 270) and 
( c ) ,  (d )  east wind ( y  = 90) cases. -, equation (10) ; ---, laminar values; symbols are DNS results. 
In ( c ) ,  the model predicts a maximum of 0.088 a t  y5 = 4.5’. 

Halleen & Lezius 1972; Tritton 1978; Bardina, Ferziger & Reynolds 1983). The 
Coriolis force associated with Q, produces a source term 

2Q,((w2) - (6) (9) 

in the dynamic equation for (-uw). Here the velocity components u and w are 
defined with respect to freestream axes and Q, is positive when it has the same sense 
as the rotation inherent in the shear. Throughout the Ekman layer the streamwise 
velocity fluctuations, (u2), are significantly larger than the vertical, <w2), (see figure 
12a) so (9) implies that the tendency of positive Q, is to reduce, and a negative 52, 
to increase, -(uw). A change in -(uw) leads to a change in production of 
turbulence energy. Therefore, although the horizontal rotation has no direct effect on 
the magnitude of the total disturbance energy (no term containing Q appears in the 
turbulence energy transport equation) it does change the disturbance energy level 
indirectly by modifying, through component redistribution, the Reynolds stress and 
hence the mean velocity profile and turbulence energy production. Specifically, 
positive 52, will reduce, and negative QH will increase, the transfer of energy to the 
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FIGURE 24. Comparison of case B90 with rotating freestream velocity boundary layer (Spalart 
1989). Mean velocity (a) in axes aligned with freestream velocity, ( b )  hodograph ; -, B90; . . . , 
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turbulence so lofig as the streamwise velocity fluctuations are greater than the 
vertical. However, since rotation terms also appear in the (u') and (w') dynamic 
equations, this will not necessarily be true for 51, of any magnitude. Positive QH 

reinforces, and negative SZ, diminishes, the (w2) - (u') difference. This implies that 
positive rotation of any magnitude will reduce the turbulent energy level, but only 
a finite range of SZ, < 0 will lead to an increase. The upper bound on this range where 
negative 52, (locally) enhances the turbulence is the point at which the rotation rate 
is equel to half the spanwise vorticity (Tritton 1978). 

The DNS results are consistent with these considerations. Positive SZ, corresponds 
to wind from the west, so that the shear 'rolls with' QH, and west wind cases are 
indeed found to become less energetic with decreasing q$ (i.e. increasing 52,). East 
wind (negative 52,) simulations show the opposite effect, until very near q$ = 0, 
where SZ, becomes so large as to switch from the production to suppression role, so 
that the turbulence collapses. It is observed that the maximum turbulent kinetic 
energy production rate (normalized by u* and 6 )  for case A45E is 70 'YO greater than 
that for A45W, while the rate for AlOE is ten times that for A15W. A rule of thumb 
suggests that the effect on turbulence of some of the ' extra strains ' such as rotation 
is an order of magnitude larger than the term representing the effect in the Reynolds- 
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FIQURE 25. Comparison of case B90 with rotating freestream velocity boundary layer (Spalart 
1989). Total r.m.8. fluctuations of' (a) velocity ( b )  vorticity profiles; -, B90; - - * ,  Spalart. 

averaged Navier-Stokes equations (Bradshaw 1973). The results presented here 
support this guideline. 

Within the turbulent Ekman layer, the Rossby number Ro = u,/Sf is the ratio of 
Coriolis to 'frictional forces at the large scales. The definition of S implies that Ro 
= 1. This indicates that rotation significantly influences the large scales at  any 
Reynolds number. We conclude that the ' f-plane' approximation, in which the 
horizontal rotation component is neglected, is not appropriate for the Ekman layer. 
Turbulence closures of the Reynolds-averaged momentum equations should include 
information about both the latitude and direction of the geostrophic wind. 

6.4. A general model 
A simple model giving u,/G and /3 as functions of latitude, geostrophic wind 
orientation and Reynolds number may be derived by repeating the steps leading to 
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the asymptotic similarity theory for the case of aibitrary q5 and y .  The resulting 
expressions are identical to (6) with A and B now depending on $ and y. We assume 
that A and B can be fit by interpolants of the form D,($) +D,($) cos y + D 3 ( $ )  sin y 
(cf. figure 20). For purposes of modelling we chose to represent Di($) by simple 
functions of cot q5. This is based upon consideration of the flows with identical G,  f 
and v (and therefore Re) at  various latitudes, and the fact that 29, = fcotq5. 
Physically, the influence of the rotation on the turbulence is assumed t~ be given 
solely by the components of QH parallel and perpendicular to G. Neal q5 = 90" (where 
we must have smooth variations ofA(q5, y )  andB(q5, y ) )  a Taylor series in the variables 
cot q5 cosy and cot q5 sin y is thus appropriate. This implies that near q5 = 90°, the 
interpolation coefficients must behave as follows : Ill($) -D,(90) K cot2 $ and D2,3  cc 
cot 4. We assume the simplest functions of cot (6 that have this form and fit the DNS 
results. A tentative model is therefore 

g((6, y )  = E,+E,cot2$+(E3cosy+E,siny)cotq5, (10) 

where g is A or B.  The coefficients which best fit the data, determined by applying 
least-squares criterion to the (turbulent) A-series results, are (El ,  E,,  E,,  E,)  = (5.24, 
0.07,0.12, -0.77) for A and (0.18, -0.03, -0.14, -0.19) for B.  Equation (10) may 
be used (away from the equator, q5 = 0) in conjunction with (6) to predict u*/G and 

as functions of Re, (6, and y for the neutrally stratified turbulent Ekman layer over 
a smooth surface. Equation (8) may then be used to estimate the rough-surface 
constants. 

The fit of the model to the y = 90 and 270, Re = 400 DNS results is given by the 
solid curves in figure 23. Symbols represent simulation results, and dashed lines, 
laminar values. Note how the opposite effects by rotation of turbulence enhancement 
and suppression associated with the two wind directions is captured in the latitude 
variation, and that as q5 approaches zero (so that B tends toward infinity) the drag 
coefficient given by the model for both y = 90 and 270 approach zero (see equation 
(6)). The model is thus not valid near $ = 0, or at  any latitude for which the predicted 
u,/G is less than the laminar value. While the vanishing drag coefficient is not 
qualitatively correct, it is a t  least consistent with the tendency toward laminarization 
expected as J0,I + 00. Ideally, one would derive an asymptotic theory for small 
latitudes. Unfortunately, it  is not clear which flow should be specified at q5 = 0, where 
f = 0. Consequently, the singular behaviour as q5 -+ 0 is not an argument against the 
model based on powers of cot 4. 

An alternative model based on powers of cosq5, rather than cot#, was also 
considered. Although exhibiting the expected variation near $ = 90, where cosq5 x 
cot (6, this model was unable to fit the data as well as the cotangent version, especially 
at  low latitudes. 

As discussed above, the ratio of the horizontal rotation to the vertical shear 
represents the relative importance of system rotation on the flow. Because the shear 
scales with G / 8  = G f / u ,  (at least in the outer region, where the rotation is felt most 
strongly) and since 2Q, = f cot 9, the rotation/shear parameter is proportional to 
(u,/G) cot 9. At fixed $ and y ,  u,/G (and thus the parameter) K l/lnRe (see equation 
6 a)) ,  which implies that the tendency toward laminarization with decreasing $ will 
slowly reduce with increasing Reynolds number. This is mirrored in the model by the 
fact that the latitude at  which the laminar and predicted drag coefficients are equal 
slowly drops as Re grows (with y = 270, this occurs at about $ = 15" for Re = 400, 
and at  $ = 5" for Re = 1500). The range of validity is therefore expected to increase 
with increasing Reynolds number. The model should probably be used only for 
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latitudes about 5" greater than the laminar-prediction cross-over 4. For the case 
displayed in figure 23(a, b ) ,  the recommended range is thus 9 2 20". In practice, 
the model is likely to be of little use at very low latitudes, since it is based upon the 
neutrally-stratified Ekman layer, which is never a valid approximation of the 
equatorial PBL. 

6.5.  Comparison with a related flow 
It is interesting to compare some 90" latitude Ekman-layer results to those from 
another three-dimensional boundary layer. The turbulent flow in which the 
freeatream velocity vector with magnit.ude U (not the entire system) rotates steadily 
at ratefhas been simulated by Spalart (1989) a t  Reynolds numbers Re = U/($f)i = 
500,620 and 767. This flow and the present one have identical laminar solutions. Our 
Re = 500 results are compared in figures 24-25 with Spalart's corresponding Re = 
500 values (indicated by the dotted curves). The mean velocity profiles are shown in 
figure 24. The agreement is quite striking, especially for the hodograph in light of the 
differences between the Re = 400 and 500 cases, and the latitude effect, discussed 
above. Similar agreement exists in the (total) r.m.s. velocity and vorticity curves of 
figure 25. A major difference between the flows is that turbulence is not sustained in 
Spalart's flow at Re = 400. This may be due to the physical difference that, with the 
freestream velocity continually rotating, no fixed direction of momentum transfer 
exists. No analogue of the quasi-laminar Ekman-layer rolls is expected. The 
constants required in the higher-order asymptotic theory for the Spalart flow are (A,  
B )  = (5.3,0.4) compared to the 4 = 90" Ekman-layer values of (5.2,O.l). While the 
difference in the values of B might seem large, recall that B appears in equation (6) 
along with terms containing 2 / ~  times a logarithm. Therefore it is better to compare, 
not B ,  but rather exp (&B) ; the ratio of the values of this quantity is exp (0 .15~)  % 
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